
THE	NEUBIRO	SOFTWARE

stefano	gualdi

Nicosia,	CY	-	21/23	september	2017
stefano.gualdi@gmail.com

mailto:stefano.gualdi@gmail.com

ABOUT	ME
software	developer
worked	on	EUBIROD/BiroBox
developer	of	NeuBiro
	
	@stefanogualdi
	stefano.gualdi

stefano.gualdi@gmail.com

mailto:stefano.gualdi@gmail.com

AGENDA
what	is	NeuBiro?
how	it	works
how	to	configure
how	to	install

THE	ORIGIN
The	initial	data	collection	used	the	Biro/Birobox	software,
but:

it	was	complicated	to	install
it	needed	a	virtual	machine	to	run	the	software	and	all	the
required	dependencies
all	the	logic	was	hardcoded	into	the	core	of	the	sofware

and	we	learned	from	experience!

WHAT	IS	NEUBIRO
The	NeuBiro’s	goal	is	to	process	an	input	data	stream,	run	a
sequence	of	statistical	operation	an	eventually	produce	a
structured	report.
NeuBiro	is	the	evolution	of	a	software	developed	under	the
MATRICE	project	of	AGE.NA.S.	(AGEnzia	NAzionale	per	i
Servizi	sanitari	regionali)	that	used	the	BIRO	approach.
NeuBiro	improves	the	original	code	base	in	several	aspects.

KEY	ASPECTS
fast
modular
have	flexible	configuration
have	few	external	dependencies	(only	R-stat)
developed	with	modern	languages	and	techniques
multiplatform	(runs	on	the	JVM)

TECHNOLOGY	STACK

HOW	IT	WORKS
NeuBiro	is	not	bound	to	a	specific	field	of	analysis.
Every	aspect	of	the	software	can	be	defined	with
configuration	modules.

COMPONENTS
The	main	components	that	implements	the	analysis	are:

Import	specification
a	config	file	which	describes	the	input	data	stream	(master
table,	lookup	tables,	calculated	fields,	etc.)

Statistical	package
the	bundle	of	all	the	statistical	modules	(specs	and
implementation)	and	the	report	template

Statistical	module	(AKA	indicator)
the	single	indicator	composed	by	the	specs	and	the	R	code

WORKFLOW

overview	of	the	main	workflow

PROCESSING	STEPS
data import:	data	are	imported	and	preprocessed,
ready	to	be	used	for	the	next	steps

data processing:	data	are	processed	executing	each
selected	statistical	module.	Each	module	creates	partial
data

report generation:	partial	data	created	in	the	data
processing	phase	are	collected	and	merged	together	to
generate	the	PDF	report

DATA	IMPORT
To	optimise	the	analysis	the	input	data	are	stored	in	an
internal	database.
The	data	import	process	read	the	input	stream	(in	CSV
format)	and	populate	the	internal	storage.
At	the	end	of	the	import	step	the	internal	database	is
populated	with	the	data	and	NeuBiro	is	ready	to	start	the
analysis.

DATA	IMPORT
The	data	are	imported	using	the	import	specifications,	and
only	the	defined	fields	are	imported.
The	import	specifications	can	also	define	new	calculated
fields	based	on	the	value	of	the	existing	ones.
This	kind	of	fields	are	useful	to	augment	the	data	structure
and/or	to	normalise	the	data.
The	specifications	can	also	define	the	import	of	accessory
(lookup)	tables.

DATA	IMPORT

overview	of	the	import	process

QUALITY	CHECKS
Quality	checks	can	be	defined	at	two	levels:

field	level
record	level

the	field	level	check	can	set	the	value	to	missing	if	it	is
invalid.
The	record	level	check	has	access	to	the	entire	record	and
can	modify	or	nullify	every	field;	it	can	also	signal	to	the
import	engine	to	discard	the	record	if	necesary.

CLEANUP
The	last	check	performed	on	the	imported	record	is	the	one
for	the	mandatory	fields.
In	this	case,	if	a	mandatory	field	is	missing,	the	entire	record
will	be	discarded.

RECORD	DEDUPLICATION
NeuBiro	implements	a	simple,	and	optional,	LOCF	(Last
Observation	Carried	Forward)	algorithm.
The	task,	if	configured,	will	run	at	the	end	of	the	import.
As	a	result	a	new	table	will	be	created	into	the	internal
database,	such	a	table	will	contain	just	one	record	per
unique	key.

DATA	PROCESSING
The	data	processing	step	is	interactive,	the	user	selects	the
statistical	modules	to	run	and	starts	the	analysis.
At	this	point	NeuBiro	creates	the	execution	graph	(taking
care	of	the	dependencies	between	modules)	and	for	each
module:

the	module’s	data	are	prepared	(as	defined	in	the
module’s	spec)
the	R	process	is	invoked	and	writes	on	disk	the	partial
data
the	R	process	returns	and	NeuBiro	performs	a	check	to
verify	the	data	have	been	created

DATA	PROCESSING

data	processing	overview

DATA	PROCESSING
Each	module	creates	a	part	of	the	final	report.
The	module	can	also	create	other	artifacts	which	can	be
used	by	other	dependant	modules	during	the	processing
phase.
With	this	technique	it	is	possible	to	optimise	the
computations,	modularise	the	code	and	avoid	duplications.

REPORT	GENERATION
After	a	successful	completion	of	the	analysis	phase	the
report	generation	is	automatically	started.
All	the	partial	outputs	from	the	modules	are	collected	and
aggregated	into	a	PDF	file.

REPORT	GENERATION
The	PDF	file	is	generated	through	a	DocBook	template.
The	template’s	layout	can	be	different	and	customised	for
each	statistical	package.

CONFIGURATION
Every	aspect	of	the	analysis	can	be	customised.
The	main	configurable	components	are:

the	import	specifications
the	statistical	package
the	report	template

IMPORT	SPECIFICATIONS
Import	can	be	configured	with	a	complete	DSL	(Domain
Specific	Language)	based	on	Groovy	language.

tables	to	import
fields	to	import
lookup	tables
calculated	fields	for	main	and	lookup	tables
quality	checks
deduplication	task

IMPORT	SPECIFICATIONS
master {
 'THETABLE' {
 label = "Master table file"
 mandatory = true

 fields {
 // tag::field[]
 'PAT_ID' {
 type = "varchar"
 size = 10
 mandatory = true
 }
 // end::field[]

 // tag::field_format[]
 'BIRTH_DATE' {
 type = "date"
 format = "dd/MM/yyyy"
 }
 // end::field_format[]
 }

 calculatedFields {

1
2

FIELD	DEFINITION

field	name
field	type

'PAT_ID' {
 type = "varchar"
 size = 10
 mandatory = true
}

1
2

1

2

FIELD	FORMAT	DEFINITION

field	of	type	date
the	date	format

 If	the	field	cannot	be	parsed	with	the	provided	format	it	will	be	set	to
missing

'BIRTH_DATE' {
 type = "date"
 format = "dd/MM/yyyy"
}

1
2

1

2

CALCULATED	FIELDS	DEFINITION

do	not	create	a	column	(temporary	field	not	persisted)
code	to	calculate	the	field’s	value
every	java/groovy	statement	can	be	used
error	handling

'RECORD_DATE' {
 persist = false
 type = "date"
 value = { record, context ->
 try {
 Date.parse("yyyy-MM-dd", record['BIRTH_DATE'])
 }
 catch(Exception) {
 null
 }
 }
}

1

2

3

4

1

2

3

4

QUALITY	CHECKS
The	quality	check	can	be	defined	at	field	and	at	record	level.
The	field	level	check	can	set	the	value	of	the	field	to	null
(missing).
The	record	level	check,	has	visibility	on	the	entire	record;	it
can	modify	every	field	and	even	discard	the	entire	record	if
desired.

FIELD	LEVEL	QUALITY	CHECKS

if	not	in	range	return	false.	eg	set	value	to	MISSING

fields {
 'TYPE_DM' {
 type = "int"
 valid = { value ->
 if (!value in [1, 2, 3]) {
 false
 }
 }
 }
}

1

1

RECORD	LEVEL	QUALITY	CHECKS

support	variables
check	the	value	of	the	field
set	the	fields	to	missing
discard	the	entire	record
return	structure	for	NeuBiro	core

recordCheck = {
 def newRecord = record
 def action = "SAVE"
 def message

 if (newRecord['dataDiNascita'] > newRecord['data']) {
 newRecord['data'] = null
 newRecord['dataDiNascita'] = null
 }

 if (newRecord['AGE'] < 0) {
 action = "DISCARD"
 message = "Invalid record AGE cannot be negative"
 }

 return [
 action: action,
 message: message,
 record: newRecord
]
}

1
1

1

2
3

3

4

5

1

2

3

4

5

LOCF	CONFIGURATION

name	of	the	resultig	table	after	the	LOCF	task
list	of	fields	representing	the	unique	key
order	of	the	table
optional	list	of	fields	excluded	from	the	LOCF	task

locf {
 table = "MASTER_LOCF"
 keys = ['PAT_ID']
 order = ['PAT_ID', 'EPI_DATE']
 exclude = ['CHOL', 'HDL', 'LDL']
}

1
2

3
4

1

2

3

4

LOOKUP	TABLES	DEFINITION
lookups {
 'LOOKUP_TABLE_ONE' {
 label = "Simple lookup table"
 mandatory = true
 skipAutoId = true
 fields {
 'CODE' {
 type = "varchar"
 size = 16
 }
 'NAME' {
 type = "varchar"
 size = 6
 }
 }

 calculatedFields {
 'DATE_START' {
 persist = true
 type = "date"
 value = { record, context ->
 try {
 Date.parse("yyyy-MM-dd", record['DATA_INIZIO'])

FINE	TUNING	IMPORT
define	indexes

indexes {
 'codeidx' {
 primary = true
 unique = true
 fields = ['CODE']
 }
}

STATISTICAL	PACKAGE
The	statistical	package	provides	the	logic	of	the	analysis.
A	statistical	package	can	contain	one	or	more	modules	(AKA
indicators).
Each	module	is	composed	by:

the	specification	file
one	or	more	implementation	files	(R	source	code)

THE	SPECIFICATION	FILE
The	indicator.specs	file	contains	the	description	of	the
module:

the	ID	for	the	indicator
optional	dependencies	from	other	modules
a	human	readable	description	(i18n	available)
the	data	preparation	query
a	declaration	of	the	expected	output	(used	for	error
checking)

THE	SPECIFICATION	FILE
Its	main	purpose	is	to	describe	all	the	objects	needed	for	the
R	code	to	operate	correctly.
Each	module	can	optionally	depend	on	the	execution	of
other	modules.
At	the	start	of	each	analysis	NeuBiro	creates	an	execution
plan	for	the	modules	and	run	each	of	them	in	the	correct
order.
This	lead	to	code	modularization	in	observance	of	the	DRY
(Don’t	Repeat	Yourself)	principle.

THE	SPECIFICATION	FILE

dependant	modules	(to	be	executed	before	the	current	one)
input	definition	for	R	code
field’s	selection
filename	for	the	output	of	the	input	block
expected	output

indicator {
 id = 'module_1_1'

 description = "Create data file example"

 dependsOn = ['setup']

 hidden = true
 excludeReport = true

 input {
 table = "MAIN"

 fields = [
 'DIST_MMG', 'MMG',
 'SEX', 'AGE_RANGE',
 'HYPERTE', 'DIAB',
 'count(*) as COUNT'
]

 groups = [
 'DIST_MMG', 'MMG',
 'SEX', 'AGE_RANGE',
 'HYPERTE','DIAB'
]

1

2

3

1

2

3

4

5

STATISTICAL	CODE
The	statistical	operations	are	implemented	with	the	R
language.
The	R	process	receives	all	the	inputs	defined	in
indicator.specs	greatly	simplifying	the	code’s
structure.
The	R	code	can	concentrate	its	efforts	on	the	single	task	to
perform	and	using	only	the	needed	data.
Thanks	to	the	dependency	system	one	module	can	also
access	data	prepared	from	other	modules.

IMPLEMENTATION	CODE
sample	code	for	a	module

load	external	modules	from	common	path	(eg.	common	functions,	libraries,	etc.)
load	implementation	from	external	file	in	same	module
execute	the	main	function
cleanup

source(paste(baseDir, "/commons/tools.r", sep=""))

source(paste(baseDir,"/module/implementation.r", sep=""))

indicator1()

rm(list=ls(all=TRUE))

1

2

3

4

1

2

3

4

IMPLEMENTATION	CODE

load	the	prepared	data
processing
write	partial	data	(will	be	aggregated	during	report	generation)

indicator1 <- function(xml=1,graphs=1,output=".",append=0,verbose=1) {

 # Set the working directory
 setwd(workDir)

 # Load data
 if (engine_type == "local") {
 input_data <- merge_table(c("db_master", "db_demographics"))
 input_data <- make_numeric(input_data, c("SUM_STRANIERI", "COUNT"))
 } else if (engine_type == "central") {
 input_data <- createCentralData(input_files=input_files, list_numvars=list_numvars)
 }

 ##
 # Table 1.1
 ##

 table1_1 <- data.frame(matrix(ncol=16,nrow=4))

 names(table1_1) <- c("desc","n","perc","ref_n","ref_perc","delta","hist","deltarrow",
 "align_1","align_2","align_3","align_4","align_5","align_6","align_7","align_8"
 table1_1[,"align_1"] <- "right"
 table1_1[,"align_2"] <- "right"
 table1_1[,"align_3"] <- "right"
 table1_1[,"align_4"] <- "right"

1

1

2

3

FINAL	REPORT
The	final	report	is	rendered	with	the	DocBook	processor.
The	entire	process	uses	a	configurable	template.
The	output	is	a	PDF	file.

MASTER	TEMPLATE

cover	page
table	of	contents	(from	the	list	of	executed	modules)
content	of	the	report	(collected	data	from	each	module)

<?xml version="1.0" encoding="utf-8"?>

<book xmlns="http://docbook.org/ns/docbook" lang="it" version="5.0">
 <info>
 <title>Project NAME</title>

 <subtitle>
 <inlinemediaobject>
 <imageobject>
 <imagedata align="center" fileref="resources/logo.png" width="100%" contentdepth
 </imageobject>
 </inlinemediaobject>
 </subtitle>

 <subtitle>
 <inlinemediaobject>
 <imageobject>
 <imagedata align="center" fileref="resources/sponsor-logo.png" width="50%" contentdepth
 </imageobject>
 </inlinemediaobject>
 </subtitle>
 </info>

 <toc/>

1

1

2

3

CHAPTER	TEMPLATE

content	of	the	single	module	output

<chapter xml:id="${id}">
 ${body}
</chapter>

1

1

HOW	TO	INSTALL	NEUBIRO
NeuBiro	can	be	easily	installed	with	the	provided	installer.
The	installer	creates	on	the	target	computer	everything
needed	to	start	working	with	the	software.

MINIMAL	REQUIREMENTS
NeuBiro	requires	the	following	mandatory	dependencies:

Component Minimium	version

Java	Virtual	Machine 1.7

R 3.3.x

 The	dependencies	must	be	installed	before	NeuBiro.

RUNNING	THE	INSTALLER
After	the	download	the	installer	can	be	run	with	a	simple
double-click	on	the	file:

neubiro-installer-0.6.jar
or	from	the	command	line	with	the	following	command:

 The	installer	program	is	multi	platform	and	can	be	launched	on	Microsoft
Windows	and	Linux.

java -jar neubiro-installer-0.6.jar

INSTALLED	RESOURCES
The	installer	is	organized	in	packages,	some	of	which	are
optional.
The	provided	packages	are:

1.	 the	main	executables	for	NeuBiro	(mandatory)

2.	 the	BIRO	System	statistical	package
3.	 the	sample	statistical	package
4.	 the	sample	data
5.	 the	documentation	for	users	and	programmers

INSTALLATION	LAYOUT

Main	installation	folder
Documentation	in	PDF	e	HTML	format
Statistical	package	main	folder
BIRO	System	statistical	package
Import	specifications
Statistical	modules
Sample	statistical	package
Sample	data	set

C:\NeuBiro-0.6
├──docs
├──packages
| ├──neubirod
| | ├──import
| | └──indicators
| └──sample-package
| ├──import
| └──indicators
└──sample-data

1
2

3
4
5

6
7

8

1

2

3

4

5

6

7

8

OPEN	SOURCE
NeuBiro	is	open	source	software	released	under	the	EUPL
v1.1	license.
The	source	code	will	be	published	on	GitHub	soon.
The	EUBIROD	network	account	on	GitHub	can	be	reached	at
the	following	address:

https://github.com/eubirodnetwork

https://github.com/eubirodnetwork

GITHUB:	SOURCE	CODE

BINARY	FILES
The	binary	components	can	be	downloaded	at	the	following
page	on	GitHub:

https://github.com/eubirodnetwork/neubiro/releases

https://github.com/eubirodnetwork/neubiro/releases

GITHUB:	BINARY	DOWNLOAD

THANK	YOU

